Cover Illustration: Stem cross section of *Pereskia guamacho*, a member of the eight-species cactus lineage hypothesized to be sister to the remaining 1800 or so species of Cactaceae. *Pereskia guamacho* is a leafy, dry-forest tree lacking many anatomical traits, such as stem succulence, mucilage cells, delayed periderm, and stem stomata, that are highly conserved in most other cacti. Rather than the evolution of a single “key innovation” early in the cactus lineage, lability of many or all of these traits in the ancestors of Cactaceae, as evidenced by high homoplasy in their outgroups, may have facilitated the morphological leap to a water-storing, photosynthetic stem. This hand section (ca. 200 μM) was stained in cresyl violet acetate and mounted in calcium chloride. See Ogburn and Edwards—Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation on pp. 391–408. Photo credit: R. Matthew Ogburn.

Table of Contents

Anatomy and Morphology

Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation

R. M. OGBURN AND E. J. EDWARDS 391

Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms

STEVEN JANSEN, BRENDAN CHOT, AND ANNE LIES PLETSE 409

Developmental Biology and Developmental Genetics

Developmental disaster1: A novel mutation causing defects during vegetative and inflorescence development in maize (*Zea mays, Poaceae*)

KIMBERLY A. PHILLIPS, ANDREA L. SKIRPAN, NICHOLAS J. KAPLINSKY, AND PAULA MCSTEEN 420

Ecology

Ephemeral clonal integration in *Calathea marantifolia* (Marantaceae): Evidence of diminished integration over time

DAVID P. MATLAGA AND LEONEL DA S. L. STERNBERG 431

Growth and survival across a gap–understory gradient: Contrast in performance of sexually vs. clonally produced offspring

DAVID P. MATLAGA AND CAROL C. HORVITZ 439

Diversity and structure of landraces of *Agave* grown for spirits under traditional agriculture: A comparison with wild populations of *A. angustifolia* (Agavaceae) and commercial plantations of *A. tequilana*

OFELIA VARGAS-PONCE, DANIEL ZIZUMBO-VILLARREAL, JAIME MARTÍNEZ-CASTILLO, JULIAN COELLO-COELLO, AND PATRICIA COLUNGA GARCIA-MARÍN 448

Genetics

Consistency between marker- and genealogy-based heritability estimates in an experimental stand of *Prosopis alba* (Leguminosae)

CECILIA BESSEGA, BEATRIZ O. SAIDMAN, MARIA R. DARQUER, MAURICIO EWENS, LEOPOLDO SANCHEZ, PHILIPPE ROZENBERG, AND JUAN C. VILARDI 458

Paleobotany

Earliest orchid macrofossils: Early Miocene *Dendrobium* and *Earina* (Orchidaceae: Epidendroideae) from New Zealand

JOHN G. CONRAN, JENNIFER M. BANNISTER, AND DAPHNE E. LEE 466

Ontogeny and ecology of the filicalean fern *Oligocarpia gothannii* (Gleicheniaceae) from the Middle Permian of China

LIADAN G. STEVENS AND JASON HILTON 475

Phycology

Three extant genera of freshwater thalassiosiroid diatoms from Middle Eocene sediments in northern Canada

ALEXANDER P. WOLFE AND PETER A. SIVER 487
Population Biology
Can feral weeds evolve from cultivated radish (Raphanus sativus, Brassicaceae)?
Lesley G. Campbell and Allison A. Snow 498

Systematics and Phytogeography
Is Oligomeris (Resedaceae) indigenous to North America? Molecular evidence for a natural colonization from the Old World
Santiago Martín-Bravo, Pablo Vargas, and Modesto Luceño 507

Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions
Zhi Xia, Yin-Zheng Wang, and James F. Smith 519

Brief Communication
Predicting the allometry of leaf surface area and dry mass
Karl J. Niklas, Edward D. Cobb, and Hanns-Christof Spatz 531

The adaptive value of cued seed dispersal in desert plants: Seed retention and release in Mammillaria pectinifera (Cactaceae), a small globose cactus
Edward M. Peters, Carlos Martorell, and Exequiel Ezcurra 537

Limitations within “The Limits to Tree Height”
Andrew G. Nettling 542

Commentary
A response to: Limitations within “The Limits to Tree Height”
George W. Koch and Stephen C. Sillett 545

Abbreviations
Miscellaneous: AFLP, amplified fragment length polymorphisms; a.s.l., above sea level; bp, base pair; BP, before present; BSA, bovine serum albumin; cpDNA, chloroplast DNA; CTAB, hexadecyltrimethylammonium bromide; cv., cultivar; ddH2O, double-distilled water; dNTP, deoxyribonucleotide E.C., Enzyme Commission; EDTA, ethylene diamine tetra-acetic acid; f. sp., forma specialis; indels, insertions and deletions; ITS, internal transcribed spacer; LM, light microscopy; mya, million years ago; PAGE, polyacrylimide gel electrophoresis; PCR, polymerase chain reaction; RAPD, random amplified polymorphic dimorphism; SDS, sodium dodecyl sulfate; SEM, scanning electron microscopy; s.l., sensu lato; s.s., sensu stricto; subs., subspecies; TEM, transmission electron microscopy

Genetics: A, mean number of alleles per locus; D, mean genetic distance; CI, consistency index; F, fixation index; FIt, total inbreeding; FST, genetic diversity among populations; FIS, inbreeding within populations; GST, total genetic diversity within populations; He, Hardy–Weinberg expected heterozygosity; Ho, observed heterozygosity; MP, most parsimonious tree; n, individual chromosome number; Nm, mean number of migrants; RI, retention index; x, base chromosome number

Statistics and math: ANOVA, analysis of variance; CV, coefficient of variation; df, degrees of freedom; N, number of individuals; p, probability; P, level of significance; Pp, percentage of polymorphic loci; PCA, principal components analysis; r, coefficient of correlation; SE, standard error; SD, standard deviation